
UNIT 3

Compression

Dictionary compression, Postings file compression, Variable byte codes, Gamma codes.

Vector Space Model- Parametric and zone indexes, Learning weights, Term frequency and

weighting, Tf-Idf weighting, Vector space model for scoring, variant tf-idf functions.

Dictionary compression

The search system on your PC must get along with the memory-hogging word

processing suite you are using at the same time.

Figure 5.3: Storing the dictionary as an array of fixed-width entries.

Dictionary as a string
. For large collections like the web, we need to allocate more bytes per pointer.
We look up terms in the array by binary search.

For Reuters-RCV1, we

need

 for storing the dictionary

in this scheme.

Dictionary-as-a-string storage.Pointers mark the end of the preceding term and
the beginning of the next.
For example, the first three terms in this example are systile, syzygetic, and
syzygial.

Blocked storage with four terms per block.The first block consists of systile,

syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six
characters, respectively. Each term is preceded by a byte encoding its length that

indicates how many bytes to skip to reach subsequent terms.

Blocked storage
We can further compress the dictionary by grouping terms in the string into of

size and keeping a term pointer only for the first term of each block
(Figure 5.5). We store the length of the term in the string as an additional byte at

the beginning of the term. We thus eliminate term pointers, but need an

additional bytes for storing the length of each term. For , we

save bytes for term pointers, but need an additional bytes
for term lengths. So the total space requirements for the dictionary of Reuters-
RCV1 are reduced by 5 bytes per four-term block, or a total

of , bringing us down to 10.37.1 MB.

https://nlp.stanford.edu/IR-book/html/htmledition/dictionary-as-a-string-1.html#fig:icompressfg7

Figure 5.6: Search of the uncompressed dictionary (a) and a dictionary compressed by blocking with
 (b).

Table 5.2: Dictionary compression for Reuters-RCV1.

 data structure size in MB

 dictionary, fixed-width 19.211.2

 dictionary, term pointers into string 10.8 7.6

, with blocking,

10.3 7.1

 , with blocking & front coding 7.9 5.9

Postings file compression

Table: Encoding gaps instead of document IDs. For example, we store gaps 107, 5, 43, ..., instead

of docIDs 283154, 283159, 283202, ... for computer. The first docID is left unchanged (only shown

for arachnocentric).

 encoding postings list

 the docIDs ... 283042 283043 283044 283045 ...

 gaps 1 1 1 ...

 computer docIDs ... 283047 283154 283159 283202 ...

 gaps 107 5 43 ...

 arachnocentric docIDs 252000 500100

 gaps 252000 248100

Recall from Table 4.2 (page 4.2) that Reuters-RCV1 has 800,000 documents, 200

tokens per document, six characters per token, and 100,000,000 postings where we

define a posting in this chapter as a docID in a postings list, that is, excluding

frequency and position information. These numbers correspond to line 3 (``case

folding'') in Table 5.1 . Document identifiers are bits long. Thus,

the size of the collection is about and the size of

the uncompressed postings file is .

To encode small numbers in less space than large numbers, we look at two types of

methods: bytewise compression and bitwise compression. As the names suggest,

these methods attempt to encode gaps with the minimum number of bytes and bits,

respectively

https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html#tab:icompresstb1
https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html#p:icompresstb1
https://nlp.stanford.edu/IR-book/html/htmledition/statistical-properties-of-terms-in-information-retrieval-1.html#tab:icompresstb5

Variable byte codes

VB encoding. Gaps are encoded using an integral number of bytes. The first bit,

the continuation bit, of each byte indicates whether the code ends with this byte (1)

or not (0).

 docIDs 824 829 215406

 gaps 5 214577

 VB code 00000110 10111000 10000101 00001101 00001100 10110001

Gamma codes

Table 5.5: Some examples of unary and codes. Unary codes are only shown for the smaller numbers.

Commas in codes are for readability only and are not part of the actual codes.

 number unary code length offset
 code

 0 0

 1 10 0 0

 2 110 10 0 10,0

 3 1110 10 1 10,1

 4 11110 110 00 110,00

 9 1111111110 1110 001 1110,001

 13 1110 101 1110,101

 24 11110 1000 11110,1000

 511 111111110 11111111 111111110,11111111

 1025 11111111110 0000000001 11111111110,0000000001

VB codes

VB codes use an adaptive number of bytes depending on the size of the gap. Bit-

level codes adapt the length of the code on the finer grained bit level. The simplest

bit-level code is unary code . The unary code of is a string of 1s followed by

a 0 (see the first two columns of Table 5.5). Obviously, this is not a very efficient

code, but it will come in handy in a moment.

How efficient can a code be in principle? Assuming the gaps

 with are all equally likely, the optimal encoding uses bits for

each . So some gaps (in this case) cannot be encoded with fewer

than bits. Our goal is to get as close to this lower bound as possible.

Figure 5.9: Entropy as a function of for a sample space with two outcomes and
.

Table: Index and dictionary compression for Reuters-RCV1. The compression ratio depends on the proportion

of actual text in the collection. Reuters-RCV1 contains a large amount of XML markup. Using the two best

compression schemes, encoding and blocking with front coding, the ratio compressed index to collection

size is therefore especially small for Reuters-RCV1:

. .

 data structure
size in

MB

https://nlp.stanford.edu/IR-book/html/htmledition/gamma-codes-1.html#tab:icompresstb3

 dictionary, fixed-width 19.211.2

 dictionary, term pointers into string 10.8 7.6

, with blocking,

10.3 7.1

 , with blocking & front coding 7.9 5.9

 collection (text, xml markup etc) 3600.0

 collection (text) 960.0

 term incidence matrix 40,000.0

 postings, uncompressed (32-bit words) 400.0

 postings, uncompressed (20 bits) 250.0

 postings, variable byte encoded 116.0

postings, encoded

101.0

The vector space model for scoring

How do we quantify the similarity between two documents in this vector space? A

first attempt might consider the magnitude of the vector difference between two

document vectors. This measure suffers from a drawback: two documents with

very similar content can have a significant vector difference simply because one is

much longer than the other. Thus the relative distributions of terms may be

identical in the two documents, but the absolute term frequencies of one may be far

larger.

Now consider the cosine similarities between pairs of the resulting three-

dimensional vectors. A simple computation shows that sim((SAS), (PAP)) is

0.999, whereas sim((SAS), (WH)) is 0.888; thus, the two books authored by

Austen (SaS and PaP) are considerably closer to each other than to

Brontë's Wuthering Heights. In fact, the similarity between the first two is almost

perfect (when restricted to the three terms we consider). Here we have considered

Computing vector scores
In a typical setting we have a collection of documents each represented by a

vector, a free text query represented by a vector, and a positive integer . We

seek the documents of the collection with the highest vector space scores on

the given query. We now initiate the study of determining the documents with

the highest vector space scores for a query. Typically, we seek these top
documents in ordered by decreasing score; for instance many search engines

use to retrieve and rank-order the first page of the ten best results. Here
we give the basic algorithm for this computation; we develop a fuller treatment of
efficient techniques and approximations in Chapter 7 .

Figure 6.14: The basic algorithm for computing vector space scores.

https://nlp.stanford.edu/IR-book/html/htmledition/computing-scores-in-a-complete-search-system-1.html#ch:cosine

Parametric and zone indexes

This metadata would generally include fields such as the date of creation and the

format of the document, as well the author and possibly the title of the document.

The possible values of a field should be thought of as finite - for instance, the set of

all dates of authorship.

Parametric search.In this example we have a collection with fields allowing us to

select publications by zones such as Author and fields such as Language.

We may build a separate inverted index for each zone of a document, to support

queries such as ``find documents with merchant in the title and william in the

author list and the phrase gentle rain in the body''. This has the effect of building an

index that looks like Figure 6.2. Whereas the dictionary for a parametric index

comes from a fixed vocabulary (the set of languages, or the set of dates), the

dictionary for a zone index must structure whatever vocabulary stems from the text

of that zone.

https://nlp.stanford.edu/IR-book/html/htmledition/parametric-and-zone-indexes-1.html#fig:zoneindex1

Learning weights

1. We are provided with a set of training examples, each of which is a tuple

consisting of a query and a document , together with a relevance

judgment for on . In the simplest form, each relevance judgments is
either Relevant or Non-relevant. More sophisticated implementations of
the methodology make use of more nuanced judgments.

2. The weights are then ``learned'' from these examples, in order that the
learned scores approximate the relevance judgments in the training
examples.

Figure 6.5: An illustration of training examples.

For each training example we have Boolean values and that

we use to compute a score from (14)

(15)

https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#eqn:1varmlr

Term frequency and weighting

Inverse document frequency
Raw term frequency as above suffers from a critical problem: all terms are
considered equally important when it comes to assessing relevancy on a query. In
fact certain terms have little or no discriminating power in determining relevance.

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be

low. Figure 6.8 gives an example of idf's in the Reuters collection of 806,791

documents; in this example logarithms are to the base 10. In fact, as we will see in

Exercise 6.2.2 , the precise base of the logarithm is not material to ranking. We

will give on page 11.3.3 a justification of the particular form in Equation 21.

Tf-idf weighting

We now combine the definitions of term frequency and inverse document

frequency, to produce a composite weight for each term in each document. The tf-

idf weighting scheme assigns to term a weight in document given by

(22)

In other words, assigns to term a weight in document that is

1. highest when occurs many times within a small number of documents
(thus lending high discriminating power to those documents);

https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html#fig:figureidf
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#ex:logbase
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-practice-1.html#p:justificationofidf
https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html#eqn:idf

2. lower when the term occurs fewer times in a document, or occurs in many

documents (thus offering a less pronounced relevance signal);

3. lowest when the term occurs in virtually all documents.

At this point, we may view each document as a vector with one component

corresponding to each term in the dictionary, together with a weight for each

component that is given by (22). For dictionary terms that do not occur in a

document, this weight is zero. This vector form will prove to be crucial to scoring

and ranking; we will develop these ideas in Section 6.3 . As a first step, we

introduce the overlap score measure: the score of a document is the sum, over

all query terms, of the number of times each of the query terms occurs in . We

can refine this idea so that we add up not the number of occurrences of each query

term in , but instead the tf-idf weight of each term in .

(23)

In Section 6.3 we will develop a more rigorous form of Equation 23.

The vector space model for scoring

Dot products

We denote by the vector derived from document , with one component
in the vector for each dictionary term. Unless otherwise specified, the reader may
assume that the components are computed using the tf-idf weighting scheme,
although the particular weighting scheme is immaterial to the discussion that
follows. The set of documents in a collection then may be viewed as a set of
vectors in a vector space, in which there is one axis for each term. This
representation loses the relative ordering of the terms in each document; recall
our example from Section 6.2 (page), where we pointed out that the
documents Mary is quicker than John and John is quicker than Mary are identical
in such a bag of words representation.

How do we quantify the similarity between two documents in this vector space? A

first attempt might consider the magnitude of the vector difference between two

document vectors. This measure suffers from a drawback: two documents with

very similar content can have a significant vector difference simply because one is

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#eqn:tfidf
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:docvectors
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:docvectors
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#eqn:docscore
https://nlp.stanford.edu/IR-book/html/htmledition/term-frequency-and-weighting-1.html#sec:secbagofwords
https://nlp.stanford.edu/IR-book/html/htmledition/term-frequency-and-weighting-1.html

much longer than the other. Thus the relative distributions of terms may be

identical in the two documents, but the absolute term frequencies of one may be far

larger.

To compensate for the effect of document length, the standard way of

quantifying the similarity between two documents and is to compute

the cosine similarity of their vector representations and

(24)

Figure 6.11: Euclidean normalized tf values for documents in Figure 6.9 .

Variant tf-idf functions

Sublinear tf scaling
It seems unlikely that twenty occurrences of a term in a document truly carry
twenty times the significance of a single occurrence. Accordingly, there has been
considerable research into variants of term frequency that go beyond counting
the number of occurrences of a term. A common modification is to use instead
the logarithm of the term frequency, which assigns a weight given by

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#fig:tfgraph

(28)

In this form, we may replace by some other function as in (28), to obtain:

(29)

Document and query weighting schemes

Equation 27 is fundamental to information retrieval systems that use any form of

vector space scoring. Variations from one vector space scoring method to another

hinge on the specific choices of weights in the vectors and .

Figure 6.16: Pivoted document length normalization.

https://nlp.stanford.edu/IR-book/html/htmledition/sublinear-tf-scaling-1.html#eqn:logweight
https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html#eqn:cosinescore

Figure 6.17: Implementing pivoted document length normalization by linear scaling.

Of course, pivoted document length normalization is not appropriate for all

applications. For instance, in a collection of answers to frequently asked questions

(say, at a customer service website), relevance may have little to do with document

length.

