
UNIT 3 

Compression 

Dictionary compression, Postings file compression, Variable byte codes, Gamma codes. 

Vector Space Model- Parametric and zone indexes, Learning weights, Term frequency and 

weighting, Tf-Idf weighting, Vector space model for scoring, variant tf-idf functions. 
 

Dictionary compression 

The search system on your PC must get along with the memory-hogging word 

processing suite you are using at the same time. 

 

Figure 5.3: Storing the dictionary as an array of fixed-width entries. 

 

Dictionary as a string 
. For large collections like the web, we need to allocate more bytes per pointer. 
We look up terms in the array by binary search. 

For Reuters-RCV1, we 

need 

  for storing the dictionary 

in this scheme. 

  
 



Dictionary-as-a-string storage.Pointers mark the end of the preceding term and 
the beginning of the next.  
For example, the first three terms in this example are systile, syzygetic, and 
syzygial. 

  
Blocked storage with four terms per block.The first block consists of systile, 

syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six 
characters, respectively. Each term is preceded by a byte encoding its length that 

indicates how many bytes to skip to reach subsequent terms. 

 
 

Blocked storage 
We can further compress the dictionary by grouping terms in the string into of 

size  and keeping a term pointer only for the first term of each block 
(Figure 5.5 ). We store the length of the term in the string as an additional byte at 

the beginning of the term. We thus eliminate  term pointers, but need an 

additional  bytes for storing the length of each term. For , we 

save  bytes for term pointers, but need an additional  bytes 
for term lengths. So the total space requirements for the dictionary of Reuters-
RCV1 are reduced by 5 bytes per four-term block, or a total 

of , bringing us down to 10.37.1 MB. 

https://nlp.stanford.edu/IR-book/html/htmledition/dictionary-as-a-string-1.html#fig:icompressfg7


 
 
 
 
 
 
 

Figure 5.6: Search of the uncompressed dictionary (a) and a dictionary compressed by blocking with 
 (b). 

Table 5.2: Dictionary compression for Reuters-RCV1. 

  data structure size in MB   

  dictionary, fixed-width 19.211.2   

  dictionary, term pointers into string 10.8 7.6   

  
, with blocking,  

10.3 7.1   

  , with blocking & front coding 7.9 5.9   

 
 
 
 
 
 
 



Postings file compression 

 

Table: Encoding gaps instead of document IDs. For example, we store gaps 107, 5, 43, ..., instead 

of docIDs 283154, 283159, 283202, ... for computer. The first docID is left unchanged (only shown 

for arachnocentric). 

    encoding postings list                 

  the docIDs ...   283042   283043   283044   283045 ...   

    gaps       1   1   1   ...   

  computer docIDs ...   283047   283154   283159   283202 ...   

    gaps       107   5   43   ...   

  arachnocentric docIDs 252000   500100                 

    gaps 252000 248100                   

Recall from Table 4.2 (page 4.2 ) that Reuters-RCV1 has 800,000 documents, 200 

tokens per document, six characters per token, and 100,000,000 postings where we 

define a posting in this chapter as a docID in a postings list, that is, excluding 

frequency and position information. These numbers correspond to line 3 (``case 

folding'') in Table 5.1 . Document identifiers are  bits long. Thus, 

the size of the collection is about  and the size of 

the uncompressed postings file is . 

To encode small numbers in less space than large numbers, we look at two types of 

methods: bytewise compression and bitwise compression. As the names suggest, 

these methods attempt to encode gaps with the minimum number of bytes and bits, 

respectively 

https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html#tab:icompresstb1
https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html#p:icompresstb1
https://nlp.stanford.edu/IR-book/html/htmledition/statistical-properties-of-terms-in-information-retrieval-1.html#tab:icompresstb5


Variable byte codes 

 

 

 

 

 

VB encoding. Gaps are encoded using an integral number of bytes. The first bit, 

the continuation bit, of each byte indicates whether the code ends with this byte (1) 

or not (0). 



  docIDs 824 829 215406     

  gaps   5 214577     

  VB code 00000110 10111000 10000101 00001101 00001100 10110001     

 

Gamma codes 

Table 5.5: Some examples of unary and  codes. Unary codes are only shown for the smaller numbers. 

Commas in  codes are for readability only and are not part of the actual codes. 

  number unary code length offset 
 code 

  

  0 0         

  1 10 0   0   

  2 110 10 0 10,0   

  3 1110 10 1 10,1   

  4 11110 110 00 110,00   

  9 1111111110 1110 001 1110,001   

  13   1110 101 1110,101   

  24   11110 1000 11110,1000   

  511   111111110 11111111 111111110,11111111   

  1025   11111111110 0000000001 11111111110,0000000001   

 
 

 

 

 

 

 

 

 

 

 



VB codes 

VB codes use an adaptive number of bytes depending on the size of the gap. Bit-

level codes adapt the length of the code on the finer grained bit level. The simplest 

bit-level code is unary code . The unary code of  is a string of  1s followed by 

a 0 (see the first two columns of Table 5.5 ). Obviously, this is not a very efficient 

code, but it will come in handy in a moment. 

How efficient can a code be in principle? Assuming the  gaps 

 with  are all equally likely, the optimal encoding uses  bits for 

each . So some gaps (  in this case) cannot be encoded with fewer 

than  bits. Our goal is to get as close to this lower bound as possible. 

 

Figure 5.9: Entropy  as a function of  for a sample space with two outcomes  and 
. 

 
Table: Index and dictionary compression for Reuters-RCV1. The compression ratio depends on the proportion 

of actual text in the collection. Reuters-RCV1 contains a large amount of XML markup. Using the two best 

compression schemes,  encoding and blocking with front coding, the ratio compressed index to collection 

size is therefore especially small for Reuters-RCV1: 

. . 

  data structure 
size in 

MB 

https://nlp.stanford.edu/IR-book/html/htmledition/gamma-codes-1.html#tab:icompresstb3


  dictionary, fixed-width 19.211.2 

  dictionary, term pointers into string 10.8 7.6 

  
, with blocking,  

10.3 7.1 

  , with blocking & front coding 7.9 5.9 

  collection (text, xml markup etc) 3600.0 

  collection (text) 960.0 

  term incidence matrix 40,000.0 

  postings, uncompressed (32-bit words) 400.0 

  postings, uncompressed (20 bits) 250.0 

  postings, variable byte encoded 116.0 

  
postings,  encoded 

101.0 

 
 

The vector space model for scoring 

How do we quantify the similarity between two documents in this vector space? A 

first attempt might consider the magnitude of the vector difference between two 

document vectors. This measure suffers from a drawback: two documents with 

very similar content can have a significant vector difference simply because one is 

much longer than the other. Thus the relative distributions of terms may be 

identical in the two documents, but the absolute term frequencies of one may be far 

larger. 

 



 

Now consider the cosine similarities between pairs of the resulting three-

dimensional vectors. A simple computation shows that sim( (SAS), (PAP)) is 

0.999, whereas sim( (SAS), (WH)) is 0.888; thus, the two books authored by 

Austen (SaS and PaP) are considerably closer to each other than to 

Brontë's Wuthering Heights. In fact, the similarity between the first two is almost 

perfect (when restricted to the three terms we consider). Here we have considered  

Computing vector scores 
In a typical setting we have a collection of documents each represented by a 

vector, a free text query represented by a vector, and a positive integer . We 

seek the  documents of the collection with the highest vector space scores on 

the given query. We now initiate the study of determining the  documents with 

the highest vector space scores for a query. Typically, we seek these  top 
documents in ordered by decreasing score; for instance many search engines 

use  to retrieve and rank-order the first page of the ten best results. Here 
we give the basic algorithm for this computation; we develop a fuller treatment of 
efficient techniques and approximations in Chapter 7 . 

 

Figure 6.14: The basic algorithm for computing vector space scores. 

https://nlp.stanford.edu/IR-book/html/htmledition/computing-scores-in-a-complete-search-system-1.html#ch:cosine


Parametric and zone indexes 

This metadata would generally include fields such as the date of creation and the 

format of the document, as well the author and possibly the title of the document. 

The possible values of a field should be thought of as finite - for instance, the set of 

all dates of authorship. 

 

  

 

Parametric search.In this example we have a collection with fields allowing us to 

select publications by zones such as Author and fields such as Language. 

We may build a separate inverted index for each zone of a document, to support 

queries such as ``find documents with merchant in the title and william in the 

author list and the phrase gentle rain in the body''. This has the effect of building an 

index that looks like Figure 6.2. Whereas the dictionary for a parametric index 

comes from a fixed vocabulary (the set of languages, or the set of dates), the 

dictionary for a zone index must structure whatever vocabulary stems from the text 

of that zone. 

https://nlp.stanford.edu/IR-book/html/htmledition/parametric-and-zone-indexes-1.html#fig:zoneindex1


 
 
 

Learning weights 

1. We are provided with a set of training examples, each of which is a tuple 

consisting of a query  and a document , together with a relevance 

judgment for  on . In the simplest form, each relevance judgments is 
either Relevant or Non-relevant. More sophisticated implementations of 
the methodology make use of more nuanced judgments. 

2. The weights  are then ``learned'' from these examples, in order that the 
learned scores approximate the relevance judgments in the training 
examples. 

 

Figure 6.5: An illustration of training examples. 

For each training example  we have Boolean values  and  that 

we use to compute a score from (14) 

 

 

(15) 

 

https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#eqn:1varmlr


Term frequency and weighting 

Inverse document frequency 
Raw term frequency as above suffers from a critical problem: all terms are 
considered equally important when it comes to assessing relevancy on a query. In 
fact certain terms have little or no discriminating power in determining relevance.  
 

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be 

low. Figure 6.8 gives an example of idf's in the Reuters collection of 806,791 

documents; in this example logarithms are to the base 10. In fact, as we will see in 

Exercise 6.2.2 , the precise base of the logarithm is not material to ranking. We 

will give on page 11.3.3 a justification of the particular form in Equation 21. 

 
 
 
 
 

Tf-idf weighting 

We now combine the definitions of term frequency and inverse document 

frequency, to produce a composite weight for each term in each document. The tf-

idf weighting scheme assigns to term  a weight in document  given by 

 

 

(22) 

 

In other words,  assigns to term  a weight in document  that is 

1. highest when  occurs many times within a small number of documents 
(thus lending high discriminating power to those documents); 

https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html#fig:figureidf
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#ex:logbase
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-practice-1.html#p:justificationofidf
https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html#eqn:idf


2. lower when the term occurs fewer times in a document, or occurs in many 

documents (thus offering a less pronounced relevance signal); 

3. lowest when the term occurs in virtually all documents. 

At this point, we may view each document as a vector with one component 

corresponding to each term in the dictionary, together with a weight for each 

component that is given by (22). For dictionary terms that do not occur in a 

document, this weight is zero. This vector form will prove to be crucial to scoring 

and ranking; we will develop these ideas in Section 6.3 . As a first step, we 

introduce the overlap score measure: the score of a document  is the sum, over 

all query terms, of the number of times each of the query terms occurs in . We 

can refine this idea so that we add up not the number of occurrences of each query 

term  in , but instead the tf-idf weight of each term in . 

 

(23) 

 
 

In Section 6.3 we will develop a more rigorous form of Equation 23. 
 
 

The vector space model for scoring 

Dot products 

We denote by  the vector derived from document , with one component 
in the vector for each dictionary term. Unless otherwise specified, the reader may 
assume that the components are computed using the tf-idf weighting scheme, 
although the particular weighting scheme is immaterial to the discussion that 
follows. The set of documents in a collection then may be viewed as a set of 
vectors in a vector space, in which there is one axis for each term. This 
representation loses the relative ordering of the terms in each document; recall 
our example from Section 6.2 (page ), where we pointed out that the 
documents Mary is quicker than John and John is quicker than Mary are identical 
in such a bag of words representation. 

How do we quantify the similarity between two documents in this vector space? A 

first attempt might consider the magnitude of the vector difference between two 

document vectors. This measure suffers from a drawback: two documents with 

very similar content can have a significant vector difference simply because one is 

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#eqn:tfidf
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:docvectors
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:docvectors
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#eqn:docscore
https://nlp.stanford.edu/IR-book/html/htmledition/term-frequency-and-weighting-1.html#sec:secbagofwords
https://nlp.stanford.edu/IR-book/html/htmledition/term-frequency-and-weighting-1.html


much longer than the other. Thus the relative distributions of terms may be 

identical in the two documents, but the absolute term frequencies of one may be far 

larger. 

 
To compensate for the effect of document length, the standard way of 

quantifying the similarity between two documents  and  is to compute 

the cosine similarity of their vector representations  and  

 

(24) 

 
 

 

Figure 6.11: Euclidean normalized tf values for documents in Figure 6.9 . 

Variant tf-idf functions 

 

Sublinear tf scaling 
It seems unlikely that twenty occurrences of a term in a document truly carry 
twenty times the significance of a single occurrence. Accordingly, there has been 
considerable research into variants of term frequency that go beyond counting 
the number of occurrences of a term. A common modification is to use instead 
the logarithm of the term frequency, which assigns a weight given by 

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#fig:tfgraph


 

 

(28) 

 
 

In this form, we may replace  by some other function  as in (28), to obtain: 

 

(29) 

Document and query weighting schemes 

Equation 27 is fundamental to information retrieval systems that use any form of 

vector space scoring. Variations from one vector space scoring method to another 

hinge on the specific choices of weights in the vectors  and .  

 

 

Figure 6.16: Pivoted document length normalization. 

https://nlp.stanford.edu/IR-book/html/htmledition/sublinear-tf-scaling-1.html#eqn:logweight
https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html#eqn:cosinescore


 

Figure 6.17: Implementing pivoted document length normalization by linear scaling. 

Of course, pivoted document length normalization is not appropriate for all 

applications. For instance, in a collection of answers to frequently asked questions 

(say, at a customer service website), relevance may have little to do with document 

length.  

 


